

M 通讯 COMMUNICATIONS

Jan 2024 Vol. 2 No.1

标准实验流程手册(上)

非损伤微测技术

矿质元素&重金属实时转运

- SOS1活性/排Na⁺
- 拒Cd能力/吸Cd²+
- ●液泡区隔Na⁺/Cd²⁺
- ●NH₄+/NO₃-吸收
 - ●氮高效/液泡氮分配
 - ●H+-ATPase活性/根表pH
 - ●非生物胁迫跨膜Ca²⁺流

非损伤微测技术国际联盟 主办

中关村旭月非损伤微测技术产业联盟 承办

目录

安研究方向	5
盐胁迫	5
根 SOS1 活性 / 排 Na ⁺ 速率检测	7
叶肉 SOS1 活性 / 排 Na ⁺ 速率检测	9
液泡区隔 Na ⁺ 能力 / 液泡膜 NHX1 活性检测	12
根 H ⁺ -ATPase 活性 / 排 H ⁺ 速率检测	14
叶 H ⁺ -ATPase 活性 / 排 H ⁺ 速率检测	16
根保钾能力检测	18
叶肉保钾能力检测	20
根 GORK 保钾机制检测	23
盐胁迫跨膜钙信号检测	25
重金属胁迫2	27
拒重金属的能力 / 吸收重金属离子的速率检测	29
根泌酸阻隔重金属吸收的能力检测	31
活性氧检测	33
液泡区隔重金属离子的能力 / 液泡吸重金属离子的速率检测	35
木质部装载重金属离子能力检测	37
根 H ⁺ -ATPase 活性 / 排 H ⁺ 速率检测	39
养分元素4	1 1
根铵硝吸收速率检测	43
氮高效机制:排 H ⁺ 促 N 吸收同化能力检测	45
钾吸收速率检测	47
氮高效机制:"胞浆-液泡"氮分配检测	49
钾高效机制:"胞浆-液泡"钾分配检测	51
安研究指标5	;3
质子泵5	
根 H ⁺ -ATPase 活性 / 根排 H ⁺ 速率检测	
叶 H ⁺ -ATPase 活性 / 叶排 H ⁺ 速率检测	56

钙信号		58
盐肋	协迫跨膜钙信号检测	59
ABA	A 处理下保卫细胞 Ca ²⁺ 信号检测	61
干旱	旱胁迫下植物根 Ca²⁺ 信号检测	63
干旱	≧胁迫下植物叶肉 Ca²⁺ 信号检测	65
低温	≣胁迫下根实时 Ca²⁺ 信号检测	67
低温	温胁迫下叶肉实时 Ca²⁺ 信号检测	69
植物	勿根模式免疫(PTI)实时 Ca²⁺ 信号检测	71
植物	物叶肉模式免疫(PTI)实时 Ca²⁺ 信号检测	73
数据分析	••••••	75
柱状	大图	75
折线	堵图	75
NMT 代表性	生文献(部分)	76
	小 迫	
	声 胁迫	
	· 医属	
	·····································	
	∃ X	
		
27 211 1	办迫	
	, 产活性	
11.3	74	
新品推荐	••••••	85
NMT 耐盐	盐机制分析仪	85
NMT 重领	金属阻控机制分析仪	88
	物养分高效机制分析仪	
INIVII 作且个	「勿ってノ」 向 XX (バル ボリノ) イバー X、・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	91
附录 1: 生物	物离子分子组学计划	94
附录 2: 《	非损伤微测技术 论文集》	95

附录	3:	基金标书 NMT 实验协助撰写	95
附录	4:	NMT 耗材费、检测费核算	95
附录	5:	实验步骤撰写参考	95
附录	6:	旭月东升	96
NI	MT ì	诞生记: 《旭月东升》之"鏖战美国"第八章 自豪与尊严	97