预印本文章说明
Online First什么是预印本: 本文是 NMT通讯 录用的早期版本,已为促进学术交流先行在线发布,但尚未完成传统的期刊出版全流程(如最终排版或精细校对)。
重要提示
当前状态:正处于出版流程中,将后续分配卷、期、页码。
引用格式建议 GB/T 7714-2015
请使用本文DOI进行引用。待文章正式发表后,请替换为完整的出版信息。
生命 = f(环境, t):从传统智慧到新生物学范式
许越1,2,3,4
1. 中关村旭月非损伤微测技术产业联盟,中国,北京 100080
2. NMT国际联盟,南迪尔菲尔德 ,美国马萨诸塞州01373
3. 旭月(北京)科技有限公司,中国,北京 100080
4. 美国扬格公司,南迪尔菲尔德 ,美国马萨诸塞州01373
通讯作者:
许越, jeff@xuyue.net
摘要
本文提出了一个通过公式 生命 = f(环境, t) 来理解生命的综合性框架,认为生命系统的状态是其环境和时间的函数。它将这一概念的哲学起源追溯到中国古代“天人合一”的智慧,并将其系统地发展成一个现代科学范式。本文主张生命科学应从静态的“解码”生物组件,转向基于实时交互的动态“调控”。该框架的核心是 离子分子组学(imOmics),它被提议作为量化函数关系‘f’的科学语言,其焦点在于生命与环境界面上的离子和分子流。实现离子分子组学的使能技术是 非损伤微测技术 (NMT),它允许对这些动态交换进行活体、原位、实时的测量。宏大的 全球离子分子组计划 (GiP) 被概述为一项大规模倡议,旨在全球范围内验证和应用该框架,涵盖智慧农业、精准医学和环境监测等多个领域。最后,文章引入了 新生物学范式——DNA → RNA → 蛋白质 → 离子分子组 → 表型,作为中心法则的关键延伸,强调了实时离子和分子交换(离子分子组)在连接遗传信息与宏观表型中的作用,从而架起了内部遗传指令与外部环境交互之间的桥梁。
关键词:
生命 = f(环境, t),离子分子组学 (imOmics),非损伤微测技术 (NMT),全球离子分子组计划 (GiP),新生物学范式
(DNA → RNA → 蛋白质 → 离子分子组 → 表型)
doi: 10.5281/zenodo.17809686
1 “生命 = f(环境, t)”——从哲学思辨到科学框架
1.1 哲学起源与深刻意涵
人类对生命与环境关系的探索源远流长。中国古代哲学中的“天人合一”思想,代表了对生命与自然环境不可分割统一性的深刻理解(许越,2023)。这一哲学认为,生命并非孤立存在,而是通过与其环境的持续相互作用与交换维持其动态平衡。公式 生命 = f(环境, t) 正是这一古老智慧的现代表达(图 1)。
图 1. 中国传统文化‘天人合一’智慧与生命 = f(环境, t) 关系的阐释。
该公式的核心意涵可分解如下:
L (生命): 此处的“生命”超越了其生物学定义,代表了一个生命系统在特定时刻的综合状态。这不仅包括宏观表型(如健康、生长、疾病),还涵盖了微观生理功能、代谢活动和应激响应。它是一个动态变化的因变量。
E (环境): “环境”是影响生命状态的所有外部因素的总和。它是一个多维变量集,涵盖物理环境(如温度、光照、湿度)、化学环境(如pH、离子浓度、营养物质、有毒物质)和生物环境(如微生物群落、种间相互作用)。
t (时间): “时间”是此公式中的一个关键维度,强调了生命-环境相互作用的动态性。所有生命过程都沿着时间轴展开;生命的响应、适应、衰老和进化都依赖于时间尺度。
f (函数关系): “f”代表了生命系统与其环境之间复杂的、非线性的、多层次的相互作用机制。它描述了生物体如何感知环境信号,并通过一系列生理生化反应(本质上是物质和能量交换)来调节自身状态。解读和量化这个“f”是现代生命科学的核心挑战之一。
长期以来,生命科学研究,特别是以基因组学为代表的“解码生命”范式,在很大程度上是静态和描述性的。生命 = f(环境, t) 公式的提出,标志着对范式转换的中华智慧解读:从“静态解码”转向“动态调控”,将研究焦点从生物体的内部组成(它是什么?)转向其与环境的动态相互作用过程(它如何运作?)。
1.2 科学框架的形成:从抽象到具体
将这一哲学概念转化为科学框架,需要具备在活体、原位、实时地观察和量化生物体与环境相互作用的能力。传统研究方法(如破坏性采样、体外分析)无法捕捉“f”所代表的动态过程。非损伤微测技术 (NMT) 以及其他类似技术,如MIFE (Newman, 2001; Shabala & Newman, 1997)、SRIES (McLamore et al., 2011; Reid & Zhao, 2011; Smith et al., 1999) 和SIET (Lin et al., 2013; Nawata et al., 2010) (Marenzana et al., 2005; Pierson et al., 1994) 等的出现和成熟,为这一转变提供了关键的技术突破。NMT可以直接测量活体样品表面微米尺度区域内特定离子和分子流(即交换速率),从而将抽象的“相互作用”概念转化为可量化的数据流(季丹丹 等, 2015; 应用进展 等, 无日期; 迟 等, 2021)。
基于NMT技术,许越提出了“生命即环境”的概念,认为生命与环境的本质边界在于信息交换和能量转换的机制,而构成两者的基本单元都是离子和分子(许越, 2023)(Sun 等, 2024; Xu, 2023)。这为生命 = f(环境, t) 提供了坚实的物理化学基础,并催生了新的学科领域——离子分子组学 (imOmics)。
2 离子分子组学 (imOmics)——解读“f”的科学语言
如果说生命 = f(环境, t) 是生命科学研究的新框架,那么 离子分子组学 (imOmics) 就是实施这一框架的科学语言和方法论。
2.1 离子分子组学的理论核心与定义
离子分子组学被定义为“对生命和非生命物质与外部环境之间的离子和分子交换过程进行整体研究的学科”。它是一种功能组学,其核心目标是揭示特定生理过程背后的离子和分子活动模式,从而建立从微观离子/分子动力学到宏观生命表型的联系(Sun 等, 2025)。
离子分子组学的独特性在于,它关注的不是生物体内静态的分子“库存”,而是生物体与环境界面上的动态“流”。这种“流”,即离子/分子流动速率,是函数“f”在特定时空点的具体数值表现。通过高通量、多维地测量这些“流”,离子分子组学可以绘制生物体对环境变化的动态谱图(离子分子谱),从而系统地解读“f”的内在机制。
2.2 核心技术支撑:非损伤微测技术 (NMT)
NMT是实现离子分子组学的技术基石(Dan-dan 等, 无日期; Han 等, 2022; Jia 等, 2017; Jing 等, 2014; J. Li 等, 2014; X. Lu 等, 无日期; 非损伤微测技术及应用(生命科学版 1.0), 无日期; *Synology NAS DS1621 + 目录*, 无日期; Sun 等, 2024; Xu, 2023b; Zhang 等, 2025)。其技术优势完美契合了生命 = f(环境, t) 公式的要求(见图2):
图 2. NMT:非损伤微测技术连接生命与环境。
活体、原位检测: NMT直接在活体样品上进行测量,避免了体外实验引起的人工假象,确保数据的生理相关性,真实反映“生命”在其自然状态下如何响应“环境”。
高时空分辨率: NMT实现了秒级时间分辨率和微米级空间分辨率,使其能够捕捉快速的生理信号(如神经细胞中的钙信号)和精细的局部响应(如植物根毛对养分的吸收),这对于分析“f”随不同“t”和空间尺度的动态变化至关重要。
多参数同步检测: 新一代NMT系统可以同时检测多种离子和分子(如Ca²⁺、H⁺、K⁺、Na⁺、O₂、H₂O₂),并同步记录多项环境参数(如温度、光照、pH)。这使得研究人员能够在一次实验中考察多个环境变量对生命状态的影响,从而更全面地理解复杂的函数“f”。
离子分子组学技术体系是一个闭环系统,包括以高通量NMT为核心的数据采集层,以环境参数记录技术(ERP/PEP)补充的环境信息层,以及基于云数据平台(如imFluxes)的数据存储、分析和建模层。该系统为系统研究生命 = f(环境, t) 提供了完整的技术解决方案。
3 全球离子分子组计划 (GiP)——公式的大规模验证与应用
如果说离子分子组学提供了理论和方法,那么 全球离子分子组计划 (GiP) 就是推动生命 = f(环境, t) 科学框架走向全球化、标准化和产业化实践的宏伟蓝图(Bip, 2023; Yue Jeff Xu, 2025;GiP 白皮书)。
3.1 GiP 的宏伟愿景与战略目标
GiP旨在通过在全球部署标准化的智能监测节点,建立一个跨物种、跨尺度、跨区域的生命-环境相互作用动态数据库。其核心目标是:
1. 实现科学研究的范式转换: 推动生命科学从“描述现象”到“预测与调控”的根本性转变(Yue Jeff Xu, 2025)。
2. 重构产业生态系统: 基于对生命 = f(环境, t) 的深刻理解,在精准医疗、智慧农业、环境治理等领域培育千亿美元级的新兴产业集群。
3. 建立国际标准: 制定活体功能检测的技术标准、数据标准和算法标准,提升研究和应用效率。
3.2 GiP 框架下“生命 = f(环境, t)”的实证研究
GiP的价值最终体现在其解决重大科学和社会问题的能力上。以下文献中的例子说明了该公式在不同领域的具体应用与验证。
3.2.1 智慧农业与粮食安全:量化植物对环境胁迫的响应
在农业中,生命 = f(环境, t) 公式直接关系到作物产量和抗逆性。
案例:水稻耐盐机制
o 生命: 水稻的生长与存活。
o 环境: 高盐胁迫(如100mM NaCl)。
o t: 盐胁迫处理后的不同时间点(分钟、小时、天)。
o f (功能机制): NMT研究表明,耐盐水稻品种的关键机制在于其根部在受到Na⁺冲击时能迅速激活SOS1等基因,主动排出有毒的Na⁺(表现为持续的Na⁺外流),同时维持K⁺的吸收(稳定的K⁺内流),从而保持细胞内离子稳态(*F2022-013...Pdf*, 无日期; K. Lu 等, 2023; Shahzad 等, 2022; Yue 等, 2012; Zhu 等, 2015)。相比之下,盐敏感品种则表现出大量的Na⁺内流和K⁺外流。在此,离子流数据就是f(高盐环境,时间)的具体量化结果,直接预测了水稻的“生命”状态(耐受或死亡)。
3.2.2 精准医学与人类健康:疾病微环境的实时监测
在医学中,这一公式为早期疾病诊断、术中导航和个性化治疗提供了新思路。
案例:术中实时肿瘤边界监测
o 生命: 正常组织 vs. 癌组织。
o 环境: 肿瘤微环境(TME),以酸性(低pH)和异常离子浓度为特征。
o t: 手术过程中的实时。
o f (功能机制): 由于癌细胞存在“瓦博格效应”,它们分泌大量乳酸,酸化TME。NMT技术可以实时扫描手术切缘,检测H⁺流。H⁺流异常高的区域(强外流)表明存在残留癌细胞(Carmona-Fontaine 等, 2013; Hsu & Sabatini, 2008; Iorio 等, 2019; Liu 等, 2004; Potter 等, 2016; Shamsi 等, 2018; C. Yang & Li, 2019; X. Yang 等, 无日期)。外科医生可以利用这个实时反馈的“f”值来精确切除肿瘤,同时最大限度地保留健康组织。这一应用将生命 = f(环境, t) 从实验室研究推向了临床实践。
案例:阿尔茨海默病 (AD) 早期预警
o 生命: 神经元细胞的健康和功能状态。
o 环境: 特定药物或电生理刺激。
o t: 刺激后毫秒至分钟级的响应时间。
o f (功能机制): 研究发现,AD模型动物的神经元在受到刺激时,其Ca²⁺信号通路的离子流模式(如异常的Ca²⁺内流或外流)与正常神经元相比存在显著差异。这种独特的离子流“指纹”有望作为AD在临床症状出现多年前的超早期生物标志物(T. Li 等, 2020)。
3.2.3 环境监测与生态保护:生态系统健康的早期预警
此公式也适用于宏观生态系统,用于评估和预警环境变化的影响。
案例:珊瑚礁白化早期预警
o 生命: 珊瑚-虫黄藻共生体的健康状况。
o 环境: 海水温度升高,海洋酸化(pH值下降)。
o t: 环境压力持续时间。
o f (功能机制): 珊瑚对环境胁迫高度敏感。在肉眼可见的白化发生之前很久,其组织表面关键离子(如Ca²⁺和H⁺)的交换就会出现异常。利用NMT监测这些关键离子流的变化,有助于建立预警模型,在珊瑚礁生态系统崩溃前发出警报,为干预争取宝贵时间。
案例:重金属污染修复
o 生命: 植物或微生物吸收和解毒重金属的能力。
o 环境: 土壤或水体中重金属离子(如Cd²⁺)的浓度。
o t: 暴露于污染环境的时长。
o f (功能机制): NMT可以精确测量植物根部对Cd²⁺的吸收速率,并同时监测Cd²⁺胁迫如何影响植物对K⁺等必需离子的吸收(Industry, 2019)。这些数据不仅揭示了重金属的毒理机制,也为筛选和培育具有高修复效率的植物(即具有特定“f”能力的植物)提供了快速精准的方法。
4 结论与展望
4.1 科学公式的总结
生命 = f(环境, t) 远非简单的数学表达式;它是一个强大的科学框架,将古老的哲学智慧与前沿的生命科学技术统一起来并系统性地论证了:
1. 理论升华: 该公式将“天人合一”的整体观提炼成一个包含四个关键要素——生命主体、环境因子、时间动态和相互作用机制——的严谨框架,使其适于科学研究。
2. 语言建立: 离子分子组学 (imOmics),以离子/分子流为核心度量,为量化和解读生命与环境之间的动态相互作用(函数“f”)提供了科学语言。
3. 工具实现: 以NMT为中心的技术体系实现了对这一动态过程的活体、实时、原位测量,使理论得以付诸实践。
4. 实践验证: 全球离子分子组计划 (GiP),通过建立全球标准化网络及其在智慧农业、精准医疗、环境监测等领域的应用,系统化、大规模地验证和应用了生命 = f(环境, t) 公式的有效性和巨大潜力。
5. 新生物学范式: 传统的分子生物学中心法则描述了遗传信息从DNA到RNA再到蛋白质的线性流动,为生命科学奠定了基础。然而,该框架主要关注细胞内信息的编码和表达,未能完全揭示生命体作为动态开放系统,如何通过持续的离子和分子交换,将内部指令与外部环境整合,最终实现复杂表型。新提出的“范式”:DNA → RNA → 蛋白质 → 离子分子组 → 表型,是对这一局限性的重要补充。它将中心法则的分子通路延伸至离子分子组 (imOme) 的宏观动态层面,并最终连接至表型,构建了一个更完整的强调生物体与其环境实时相互作用的生命活动描述体系(见图3)。
图 3. 简化的新生物学范式。离子分子组 (imOme): 指的是在特定时间和条件下,生物体(及其组成部分)与外部环境之间所有离子和分子交换活动的动态总和。它如同生命相互作用的实时日志,记录了生物体如何响应环境变化调节离子和分子的流速、通量和分布,维持内部稳态,并执行各种生命过程。它将研究视角从细胞内遗传信息的内部传递,扩展到了整个生物体在其环境中的实时物质与能量交换过程。将离子分子组理解为连接微观分子事件与宏观表型的桥梁,对于阐明复杂疾病机制、开发新型环境修复策略、提高农产品品质等领域具有重要价值。这标志着生命科学从基于序列解读“生命之书”,转向监测和解读实时的“生命之流”。
这一新范式的核心在于将离子分子组定位为连接上下游的关键环节。蛋白质作为基因表达的终产物,是生命活动的执行者,但它们并非在真空中运作。离子分子组精确地捕捉了在特定时空下,由蛋白质(如离子通道、转运体、酶等)介导和调节的生物体与其外部环境之间所有离子和分子交换的动态总和。这个过程就像一本“生命相互作用的实时日志”。它不仅记录了基于遗传信息的静态蓝图,还动态地反映了生物体如何通过调节离子(如K⁺、Ca²⁺)和分子(如葡萄糖、代谢物)的流速、通量和分布,来响应光照、温度、养分乃至胁迫等环境变化。这种动态交换维持着内部稳态,并驱动着生长、发育、适应等各种生命活动。
4.2 未来展望
展望未来,在GiP驱动的生命 = f(环境, t) 科学框架引领下,生命科学将迈入“预测与调控”的新时代:
从预测到精准调控: 随着GiP全球数据库的不断增长,结合人工智能和机器学习算法,我们将能够构建更精确的预测模型。未来,我们不仅能预测疾病发作、作物生长和生态系统演变,还能通过精确干预环境因素(如药物、营养、物理场)来主动调控生命过程,实现“上医治未病”的理想。
数据驱动的科学与跨尺度整合: GiP产生的大规模、标准化的离子分子组学数据,将与基因组学、蛋白质组学、代谢组学等多组学数据深度融合。这将使我们能够建立一个完整的认知链——从基因到表型,从静态蓝图到动态功能——跨越分子、细胞、组织、个体乃至生态系统的多个尺度。
新产业革命的催化剂: 对生命过程的深刻理解和精准调控能力,必将催化一系列颠覆性技术和新兴产业的诞生,包括个性化精准医疗、环境友好的未来农业、高效生物制造和数字生态健康管理等,为解决全球健康、粮食和环境挑战提供方案。
因此,生命 = f(环境, t) 不仅代表从传统智慧到科学公式的演进,更开辟了一条通往生命科学与和谐发展的新路径。这条路径的核心在于运用科学手段,重新认识和量化生命与其环境之间最古老、最深刻的联系。该框架从根本上重新定位了我们研究生物学的方法,将焦点从生命在静态、组成意义上是什么?转向它如何通过与其周围环境的持续、动态对话来运作和持续?其意义深远,表明要真正理解健康、疾病、生长或生态系统稳定性,我们必须超越对部件的编目,开始解读构成生命过程本身的实时流动。
这种由GiP和离子分子组学赋能的新范式,有望将生命科学转变为一门预测性和调控性的学科。随着关于生命-环境相互作用的大规模、标准化数据集的增长,并与人工智能和机器学习相结合,我们将从仅仅观察现象,进步到预测生物学结果——无论是疾病的发作、特定气候条件下作物的产量,还是生态系统的临界点。这种预测能力是进行精确干预的前提。最终目标超越了预测,延伸到积极、有益的调控:根据个体的实时生理状态定制医疗方案,设计动态优化植物健康和资源利用的农业实践,或管理生态系统以增强其抵御环境变化的能力。这在一个宏大的、技术赋能的尺度上体现了“上医治未病”这一古老理想。
此外,提出的新生物学范式(DNA → RNA → 蛋白质 → 离子分子组 → 表型)为我们理解生物学提供了一个关键的、缺失的环节。它将离子分子组——离子和分子交换的动态总和——定位为遗传潜力在特定环境背景下转化为功能现实的关键界面。基因提供了工具(蛋白质)的蓝图,而离子分子组揭示了这些工具实际上如何被使用,其效率受即时环境条件的调节。这弥合了遗传学与生理学之间的历史鸿沟,创造了一个从信息到行动的连续因果链。认识到这种流动并非严格单向的——有证据表明翻译后修饰和其他反馈机制会影响基因表达——增加了一层复杂性,而新范式容纳了这一点,将生命描绘成一个精细调控的、依赖于情境的反馈系统,而非固定程序的线性执行(见图3)。
最终,生命 = f(环境, t) 框架的广泛采用有可能催化一场以生物学理解为中心的新产业革命。它将推动个性化精准医疗、可持续高效农业、智能化环境管理和生物制造的进步。通过提供统一的科学语言和工具集来应对全球健康、粮食安全和环境可持续性方面的挑战,这一框架不仅仅是推进科学;它为实现人类与维持所有生命的行星环境之间更和谐、更可持续的共存提供了一份实用的路线图。从“天人合一”的哲学直觉,到可量化、可操作的生命 = f(环境, t) 科学公式,这一历程标志着人类思想的重大成熟,使我们能够以前所未有的智慧和精确度来管理复杂的生命网络。
Life = f(Environment, t)
From Traditional Wisdom to a New Biology Dogma
Yue Jeff Xu1,2,3,4
1. Zhongguancun Xuyue NMT Industrial Alliance, Beijing 100080, China
2. NMT International Alliance, South Deerfield, Massachusetts 01373, USA
3. Xuyue (Beijing) Sci. & Tech. Co., Ltd., Beijing 100080, China
4. YoungerUSA LLC, South Deerfield, Massachusetts 01373, USA
Corresponding author:
Yue Jeff Xu, jeffxu@youngerusa.com
Abstract
This article presents a comprehensive framework for understanding life through the formula Life = f(Environment, t), positing that the state of a living system is a function of its environment and time. It traces the philosophical origins of this concept to the ancient Chinese wisdom of "Harmony between Heaven and Humanity" and systematically develops it into a modern scientific paradigm. The paper argues for a shift in life sciences from static "decoding" of biological components to dynamic "regulation" based on real-time interactions. Central to this framework is Ionic & Molecular Omics (imOmics), proposed as the scientific language to quantify the functional relationship 'f' by focusing on the fluxes of ions and molecules at the interface between life and its environment. The enabling technology for imOmics is Non-invasive Micro-test Technology (NMT), which allows for in vivo, in situ, and real-time measurement of these dynamic exchanges. The ambitious Global imOme Project (GiP) is outlined as a large-scale initiative to validate and apply this framework globally across various fields, including smart agriculture, precision medicine, and environmental monitoring. Finally, the article introduces a New Biology Dogma—DNA → RNA → Protein → imOme → Phenotype—as a crucial extension of the Central Dogma, emphasizing the role of real-time ion and molecule exchanges (the imOme) in connecting genetic information to macroscopic phenotypes, thereby bridging internal genetic instructions with external environmental interactions.
Key Words:
Life = f(Environment, t), Ionic & Molecular Omics (imOmics), Non-invasive Micro-test Technology (NMT), Global imOme Project (GiP), New Biology Dogma
(DNA → RNA → Protein → imOme → Phenotype)
doi : 10.5281/zenodo.17464317
1 "Life = f(Environment, t)" - From Philosophical Speculation to Scientific Framework
1.1 Philosophical Origins and Profound Implications
Humanity's exploration of the relationship between life and environment has a long history. The concept of "Harmony between Heaven and Humanity ‘天人合一’" in ancient Chinese philosophy represents a profound understanding of the inseparable unity between life and the natural environment (许越, 2023). This philosophy posits that life is not an isolated existence but maintains its dynamic balance through continuous interaction and exchange with its environment. The formula Life = f(Environment, t) is a modern, scientific expression of this ancient wisdom (Figure. 1).
Figure 1. Interpretation of the relationship between Chinese traditional ‘天人合一’ wisdom to Life = f(Environment, t).The core implications of this formula can be broken down as follows:L(Life): "Life" here extends beyond its biological definition, representing the comprehensive state of a living system at a specific moment. This includes not only macroscopic phenotypes (such as health, growth, disease) but also encompasses microscopic physiological functions, metabolic activities, and stress responses. It is a dynamically changing dependent variable; E(Environment): "Environment" is the sum of all external factors affecting the state of life. It is a multidimensional variable set, covering the physical environment (e.g., temperature, light, humidity), chemical environment (e.g., pH, ion concentration, nutrients, toxic substances), and biological environment (e.g., microbial communities, interspecies interactions); t (Time): "Time" is a crucial dimension in this formula, emphasizing the dynamic nature of life-environment interactions. All life processes unfold along the time axis; life's responses, adaptations, aging, and evolution all depend on the time scale; f (Functional Relationship): "f" represents the complex, nonlinear, multi-level interaction mechanisms between living systems and their environment. It describes how organisms perceive environmental signals and regulate their own state through a series of physiological and biochemical reactions (fundamentally exchanges of matter and energy). Interpreting and quantifying this "f" is one of the core challenges of modern life sciences.
For a long time, life science research, particularly the "decoding life" paradigm represented by genomics, has been largely static and descriptive. The proposal of the Life = f(Environment, t) formula signifies a call for a paradigm shift: from "static decoding" to "dynamic regulation," moving the research focus from the internal composition of living organisms (What it is) to their dynamic interaction processes with the environment (How it works).
1.2 Formation of the Scientific Framework: From Abstract to Concrete
Transforming this philosophical concept into a scientific framework requires the ability to observe and quantify the interactions between organisms and their environment in real-time, in vivo, and in situ. Traditional research methods (such as destructive sampling, in vitro analysis) cannot capture the dynamic processes represented by "f". The emergence and maturation of Non-invasive Micro-test Technology (NMT) among other similar techniques, such as MIFE (Newman, 2001; Shabala & Newman, 1997) SRIES (McLamore et al., 2011; Reid & Zhao, 2011; Smith et al., 1999) and SIET (Lin et al., 2013; Nawata et al., 2010) (Marenzana et al., 2005; Pierson et al., 1994)etc., provided a crucial technological breakthrough for this transition. NMT can directly measure the flux (i.e., exchange rate) of specific ions and molecules in micrometer-scale regions on the surface of living samples, thereby transforming the abstract concept of "interaction" into quantifiable data streams (季丹丹 et al., 2015; 应用进展 et al., n.d.; 迟 et al., 2021).
Based on NMT technology, the concept of "Life as Environment" was proposed, suggesting that the essential boundary between life and environment lies in the mechanisms of information exchange and energy conversion, and that the fundamental units constituting both are ions and molecules (许越, 2023)(Sun et al., 2024; Xu, 2023). This provides a solid physicochemical foundation for Life = f(Environment, t) and gave rise to the new disciplinary field of Ionic & Molecular Omics (imOmics).
2 Ionic & Molecular Omics (imOmics) - The Scientific Language for Interpreting "f"
If Life = f(Environment, t) is the new framework for life science research, then Ionic & Molecular Omics (imOmics) is the scientific language and methodology for implementing this framework.
2.1 Theoretical Core and Definition of imOmics
imOmics is defined as "the holistic study of the ion and molecule exchange processes between living and non-living matter and the external environment" . It is a functional omics whose core goal is to reveal the patterns of ionic and molecular activities underlying specific physiological processes, thereby establishing the connection from microscopic ion/molecule dynamics to macroscopic life phenotypes (Sun et al., 2025).
The uniqueness of imOmics lies in its focus not on the static molecular "inventory" within an organism, but on the dynamic "flux" at the interface between the organism and its environment. This "flux," i.e., the ion/molecule flow rate, is the specific numerical representation of the function "f" at a particular point in space and time. By measuring these "fluxes" in a high-throughput, multi-dimensional manner, imOmics can map the dynamic profile (Iono-molecular Profile) of an organism's response to environmental changes, thereby systematically interpreting the intrinsic mechanisms of "f".
2.2 Core Technical Support: Non-invasive Micro-test Technology (NMT)
NMT is the technological cornerstone that enables imOmics (Dan-dan et al., n.d.; Han et al., 2022; Jia et al., 2017; Jing et al., 2014; J. Li et al., 2014; X. Lu et al., n.d.; Non-Invasive Micro-Test Technology & Applications (Life Science Ver. 1.0), n.d.; Synology NAS DS1621 + 目录, n.d.; Sun et al., 2024; Xu, 2023b; Zhang et al., 2025). Its technical advantages perfectly align with the requirements of the Life = f(Environment, t) formula:
Figure 2. NMT: Non-invasive Micro-test Technique bridges Life and Environment. In Vivo, In Situ Detection: NMT performs measurements directly on living samples, avoiding artifacts caused by in vitro experiments, ensuring physiological relevance of the data, and truly reflecting how "Life" responds to the "Environment" in its natural state. High Spatiotemporal Resolution: NMT achieves second-level temporal resolution and micrometer-level spatial resolution, enabling it to capture rapid physiological signals (e.g., calcium signals in nerve cells) and fine local responses (e.g., nutrient uptake by plant root hairs), which is crucial for analyzing the dynamic changes of "f" across different "t" and spatial scales. Multi-parameter Simultaneous Detection: The new generation of NMT systems can simultaneously detect multiple ions and molecules (e.g., Ca²⁺, H⁺, K⁺, Na⁺, O₂, H₂O₂) and synchronously record multiple environmental parameters (e.g., temperature, light, pH) . This allows researchers to examine the effects of multiple environmental variables on the state of life in a single experiment, leading to a more comprehensive understanding of the complex function "f".
The imOmics technology system is a closed-loop system, comprising a data acquisition layer centered on high-throughput NMT, an environmental information layer supplemented by Environmental Parameter Recording Technology (ERP/PEP), and a data storage, analysis, and modeling layer based on cloud data platforms (e.g., imFluxes.com) . This system provides a complete technological solution for the systematic study of Life = f(Environment, t).
3 Global imOme Project (GiP) - Large-scale Verification and Application of the Formula
If imOmics provides the theory and methods, then the Global imOme Project (GiP) is the grand blueprint for pushing the Life = f(Environment, t) scientific framework towards globalized, standardized, and industrialized practice (Bip, 2023; Yue Jeff Xu, 2025).
3.1 GiP's Grand Vision and Strategic Goals
GiP aims to build a dynamic database of life-environment interactions across species, scales, and regions by deploying standardized intelligent monitoring nodes worldwide. Its core objectives are:
- Achieve a Paradigm Shift in Scientific Research: Promote a fundamental transformation in life sciences from "describing phenomena" to "predicting and regulating"(Yue Jeff Xu, 2025).
- Restructure Industrial Ecosystems: Based on a deep understanding of Life = f(Environment, t), foster multi-billion dollar emerging industrial clusters in fields such as precision medicine, smart agriculture, and environmental governance.
- Establish International Standards: Develop technical standards, data standards, and algorithm standards for in vivo functional detection to enhance research and application efficiency.
3.3 Empirical Research on "Life = f(Environment, t)" within the GiP Framework
The value of GiP is ultimately reflected in its ability to address major scientific and social problems. The following examples from the literature illustrate the specific application and validation of this formula in different fields.
3.2.1 Smart Agriculture and Food Security: Quantifying Plant Responses to Environmental Stress
In agriculture, the Life = f(Environment, t) formula directly relates to crop yield and stress resistance.
Case: Rice Salt Tolerance Mechanism
Life: Growth and survival of rice.
Environment: High salt stress (e.g., 100mM NaCl).
t: Different time points after salt stress treatment (minutes, hours, days).
f (Functional Mechanism): NMT studies revealed that the key mechanism in salt-tolerant rice varieties lies in their roots' ability to rapidly activate genes like SOS1 upon Na⁺ shock, actively excreting toxic Na⁺ (manifested as sustained Na⁺ efflux) while maintaining K⁺ uptake (stable K⁺ influx), thereby preserving intracellular ion homeostasis (F2022-013-Isotope-Based Visualization of Element Distribution in Phloem Provides Functional Evidence for the Operation of SOS1 Na+H+ Exchangers in Mature Zones of Arabidopsis Root.Pdf, n.d.; K. Lu et al., 2023; Shahzad et al., 2022; Yue et al., 2012; Zhu et al., 2015). Salt-sensitive varieties, in contrast, show massive Na⁺ influx and K⁺ efflux. Here, the ion flux data are the specific quantitative results of f(High salt environment, time), directly predicting the "Life" state of the rice (tolerant or dead).
3.2.2 Precision Medicine and Human Health: Real-time Monitoring of Disease Microenvironments
In medicine, this formula provides new ideas for early disease diagnosis, intraoperative navigation, and personalized treatment.
Case: Real-time Tumor Border Monitoring During Surgery
Life: Normal tissue vs. Cancerous tissue.
Environment: Tumor microenvironment (TME), characterized by acidity (low pH) and abnormal ion concentrations.
t: Real-time during surgery.
f (Functional Mechanism): Due to the "Warburg effect" in cancer cells, they secrete large amounts of lactate, acidifying the TME. NMT technology can scan the surgical margin in real-time, detecting H⁺ flux. Areas with abnormally high H⁺ flux (strong efflux) indicate regions with residual cancer cells (Carmona-Fontaine et al., 2013; Hsu & Sabatini, 2008; Iorio et al., 2019; Liu et al., 2004; Potter et al., 2016; Shamsi et al., 2018; C. Yang & Li, 2019; X. Yang et al., n.d.). Surgeons can use this real-time feedback "f" value to precisely remove the tumor while maximizing the preservation of healthy tissue. This application pushes Life = f(Environment, t) from laboratory research into clinical practice.
Case: Early Warning for Alzheimer's Disease (AD)
Life: Health and functional state of neuronal cells.
Environment: Specific drugs or electrophysiological stimuli.
t: Millisecond to minute-level response time after stimulation.
f (Functional Mechanism): Studies found that neurons in AD model animals exhibit significantly different ion flow patterns (e.g., abnormal Ca²⁺ influx or efflux) in their Ca²⁺ signaling pathways upon stimulation compared to normal neurons. This unique ion flow "fingerprint" holds promise as an ultra-early biomarker for AD years before clinical symptoms appear (T. Li et al., 2020).
3.2.3 Environmental Monitoring and Ecological Conservation: Early Warning for Ecosystem Health
This formula is also applicable to macro-ecosystems for assessing and warning of impacts from environmental changes.
Case: Coral Reef Bleaching Early Warning
Life: Health of the coral-zooxanthellae symbiosis.
Environment: Rising seawater temperature, ocean acidification (decreasing pH).
t: Duration of environmental pressure.
f (Functional Mechanism): Corals are highly sensitive to environmental stress. Long before visible bleaching occurs, abnormalities appear in the exchange of key ions like Ca²⁺ and H⁺ on their tissue surface. Monitoring changes in the flux of these key ions using NMT can help build early warning models to alert before the collapse of the coral reef ecosystem, buying valuable time for intervention.
Case: Heavy Metal Pollution Remediation
Life: Ability of plants or microorganisms to absorb and detoxify heavy metals.
Environment: Concentration of heavy metal ions (e.g., Cd²⁺) in soil or water.
t: Duration of exposure to the polluted environment.
f (Functional Mechanism): NMT can precisely measure the absorption rate of Cd²⁺ by plant roots and simultaneously monitor how Cd²⁺ stress affects the plant's uptake of essential ions like K⁺ (Industry, 2019). This data not only reveals the toxic mechanism of heavy metals but also provides a rapid and precise method for screening and cultivating plants with high remediation efficiency (i.e., plants with a specific "f" capability).
4 Conclusion and Outlook
4.1 Summary of the Scientific Formula
Life = f(Environment, t) is far from a simple mathematical expression; it is a powerful scientific framework that unifies ancient philosophical wisdom with cutting-edge life science technology. This report systematically demonstrates:
- Theoretical Elevation: The formula refines the holistic concept of "Harmony between Heaven and Humanity" into a rigorous framework containing four key elements—the living subject, environmental factors, temporal dynamics, and interaction mechanisms—amenable to scientific investigation.
- Language Establishment: Ionic & Molecular Omics (imOmics), using ion/molecule flux as its core metric, provides the scientific language for quantifying and interpreting the dynamic interactions (the function "f") between life and environment.
- Tool Implementation: The technology system centered on NMT enables the in vivo, real-time, in situ measurement of this dynamic process, putting theory into practice.
- Practical Validation: The Global imOme Project (GiP), through the establishment of a global standardized network and its applications in smart agriculture, precision medicine, environmental monitoring, and other fields, systematically and on a large scale validates and applies the effectiveness and immense potential of the Life = f(Environment, t) formula.
- New Biology Dogma: The traditional Central Dogma of molecular biology describes the linear flow of genetic information from DNA to RNA to protein, laying the foundation for the life sciences. However, this framework primarily focuses on the encoding and expression of information within the cell, failing to fully reveal how living organisms, as dynamic open systems, integrate internal instructions with the external environment through continuous ion and molecule exchange to ultimately achieve complex phenotypes. The newly proposed "Dogma": DNA → RNA → Protein → imOme → Phenotype, serves as an important supplement to this limitation. It extends the molecular pathway of the Central Dogma to the macroscopic dynamic level of the ion-molecule group (imOme) and finally connects it to the phenotype, constructing a more complete system for describing life activities that emphasizes real-time interaction between the organism and its environment.
Figure 3. New Biology Dogma. imOme: refers to the dynamic totality of all ion and molecule exchange activities between an organism (and its components) and the external environment under specific time and conditions. It functions like a real-time log of life's interactions, documenting how an organism regulates the fluxes of ions and molecules in response to environmental changes, maintains internal homeostasis, and carries out various life processes. It expands the research perspective from the internal transmission of genetic information within the cell to the real-time material and energy exchange processes of the entire organism within its environment. Understanding the imOme as a bridge connecting microscopic molecular events to macroscopic phenotypes holds significant value for elucidating the mechanisms of complex diseases, developing novel environmental remediation strategies, and improving agricultural product quality, among other fields. This marks a transition for the life sciences from deciphering the "book of life" based on sequences to monitoring and interpreting the real-time "flow of life".
The core of this new paradigm lies in positioning the imOme as a critical link connecting upstream and downstream. Proteins, as the end products of gene expression, constitute the executors of life activities, but they do not function in a vacuum. The imOme precisely captures the dynamic sum of all ion and molecule exchanges between an organism and its external environment at a specific time and space, mediated and regulated by proteins (such as ion channels, transporters, enzymes, etc.). This process is like a real-time "log of life interactions." It not only records the static blueprint based on genetic information but also dynamically reflects how the organism responds to environmental changes like light, temperature, nutrients, and even stress by regulating the flow rate, flux, and distribution of ions (e.g., K⁺, Ca²⁺) and molecules (e.g., glucose, metabolites). This dynamic exchange maintains internal homeostasis and drives various life activities such as growth, development, and adaptation.
4.2 Future Outlook
Looking ahead, the Life = f(Environment, t) scientific framework, driven by GiP, will lead life sciences into a new era of "Prediction and Regulation":
From Prediction to Precise Regulation: As the GiP global database continues to grow, combined with AI and machine learning algorithms, we will be able to build more accurate predictive models. In the future, we will not only predict disease onset, crop growth, and ecosystem evolution but also actively regulate life processes by precisely intervening in environmental factors (e.g., drugs, nutrition, physical fields), realizing the ideal of "the superior doctor treats the pre-disease".
Data-Driven Science with Cross-Scale Integration: The massive, standardized imOmics data generated by GiP will be deeply integrated with multi-omics data such as genomics, proteomics, and metabolomics. This will enable us to establish a complete cognitive chain—from genes to phenotypes, from static blueprints to dynamic functions—across multiple scales: molecular, cellular, tissue, individual, and even ecosystem.
Catalyst for a New Industrial Revolution: The deep understanding and precise regulatory capability of life processes will inevitably catalyze a series of disruptive technologies and emerging industries, including personalized precision medicine, environmentally friendly future agriculture, efficient biomanufacturing, and digital ecological health management, providing solutions to global challenges in health, food, and the environment.
In summary, Life = f(Environment, t) represents not just an evolution from traditional wisdom to a scientific formula but also opens a new path towards the future of life sciences and harmonious development. The core of this path lies in using scientific means to re-recognize and quantify the most ancient and profound connection between life and its environment. This framework fundamentally reorients our approach to biology, shifting the focus from what life is in a static, compositional sense to how it functions and persists through continuous, dynamic dialogue with its surroundings. The implications are profound, suggesting that to truly understand health, disease, growth, or ecosystem stability, we must move beyond cataloging parts and begin deciphering the real-time flows and fluxes that constitute the very process of living.
This new paradigm, empowered by GiP and imOmics, promises to transform life sciences into a predictive and regulatory discipline. As massive, standardized datasets on life-environment interactions grow, integrated with AI and machine learning, we will progress from merely observing phenomena to forecasting biological outcomes—be it the onset of a disease, the yield of a crop under specific climatic conditions, or the tipping point of an ecosystem. This predictive power is the prerequisite for precise intervention. The ultimate goal extends beyond prediction to active, benevolent regulation: tailoring medical therapies to an individual's real-time physiological state, designing agricultural practices that dynamically optimize plant health and resource use, or managing ecosystems to enhance their resilience against environmental change. This embodies the ancient ideal of "the superior doctor treats the pre-disease" on a grand, technologically-enabled scale.
Furthermore, the proposed New Biology Dogma (DNA → RNA → Protein → imOme → Phenotype) provides a crucial, missing link in our understanding of biology. It positions the imOme—the dynamic totality of ion and molecule exchanges—as the pivotal interface where genetic potential is translated into functional reality under specific environmental contexts. While genes provide the blueprint for the tools (proteins), the imOme reveals how those tools are actually being used, their efficiency modulated by immediate environmental conditions. This bridges the historical chasm between genetics and physiology, creating a continuous chain of causation from information to action. The recognition that this flow is not strictly unidirectional—with evidence of post-translational modifications and other feedback mechanisms influencing gene expression—adds a layer of complexity that the new dogma accommodates, portraying life as an intricately regulated, context-dependent feedback system rather than a linear execution of a fixed program.
Ultimately, the widespread adoption of the Life = f(Environment, t) framework has the potential to catalyze a new industrial revolution centered on biological understanding. It will fuel advancements in personalized precision medicine, sustainable and efficient agriculture, intelligent environmental management, and bio-manufacturing. By providing a unified scientific language and toolset to address global challenges in health, food security, and environmental sustainability, this framework does more than advance science; it offers a practical roadmap for achieving a more harmonious and sustainable coexistence between humanity and the planetary environment that sustains all life. The journey from the philosophical intuition of "Harmony between Heaven and Humanity" to the quantifiable, actionable scientific formula of Life = f(Environment, t) marks a significant maturation of human thought, empowering us to steward the complex web of life with unprecedented wisdom and precision.
Statement
In compliance with relevant international regulations, this statement is hereby issued:
This document was created with the assistance of artificial intelligence technology (including but not limited to: DeepSeek, Metaso, Tencent Yuanbao, ima, etc.). All AI-generated content has undergone human review, editing, and revision. The author/our organization assume responsibility for the accuracy, authenticity, and legality of the content.
In accordance with relevant service agreements and legal provisions, the intellectual property rights/copyrights pertaining to the outcomes formed with substantial human involvement are owned by the author/our organization. The content of this document is for reference only and does not constitute authoritative advice in professional fields such as legal, medical, or financial matters. Readers should exercise their own judgment and are solely responsible for their use of the information contained herein.
Reference:
Bip, B. P. (2023). 生物离子分子组学计划 BiP. 44–50. https://doi.org/10.5281/zenodo.8357567
Carmona-Fontaine, C., Bucci, V., Akkari, L., Deforet, M., Joyce, J. A., & Xavier, J. B. (2013). Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proceedings of the National Academy of Sciences of the United States of America, 110(48), 19402–19407. https://doi.org/10.1073/pnas.1311939110
Dan-dan, J., Shu-he, W., & Si-qi, W. (n.d.). Non-invasive micro-test technique and its application in environmental science.. https://doi.org/10.13292/j.1000-4890.2015.0283
F2022-013-Isotope-based visualization of element distribution in phloem provides functional evidence for the operation of SOS1 Na+H+ exchangers in mature zones of Arabidopsis root.pdf. (n.d.).
Han, M., Yang, H., Yu, G., Jiang, P., You, S., Zhang, L., Lin, H., Liu, J., & Shu, Y. (2022). Application of Non-invasive Micro-test Technology (NMT) in environmental fields: A comprehensive review. Ecotoxicology and Environmental Safety, 240(June). https://doi.org/10.1016/j.ecoenv.2022.113706
Hsu, P. P., & Sabatini, D. M. (2008). Cancer Cell Metabolism: Warburg and Beyond. Cell, 134(5), 703–707. https://doi.org/10.1016/j.cell.2008.08.021
Industry, A. C. (2019). 重金属污染土壤微生物修复技术研究进展. 51608272.
Iorio, J., Petroni, G., Duranti, C., & Lastraioli, E. (2019). Potassium and Sodium Channels and the Warburg Effect: Biophysical Regulation of Cancer Metabolism. Bioelectricity, 1(3), 188–200. https://doi.org/10.1089/bioe.2019.0017
Jia, D., Liu, A., Li, H., Yu, Y., Wei, Z., Wang, J., & Zhou, L. (2017). Applications and advances of non-invasive micro-test technology in plant physiological-ecology research. Chinese Journal of Applied & Environmental Biology, 23(31370619), 175–182.
Jing, L. I., Qing-qing, H. A. N., Li-jie, D., Pei, W., Hui-ru, L. I., Suo-min, W., & Jin-lin, Z. (2014). Applications and Advances of Non-Invasive Micro-Test Technique in Plant Physiology Researches. 50(10). https://doi.org/10.13592/j.cnki.ppj.2014.0209
Li, J., Han, Q. Q., Duan, L. J., Wang, P., Li, H. R., Wang, S. M., & Zhang, J. L. (2014). Applications and advances of non-invasive micro-test technique in plant physiology researches. Zhiwu Shengli Xuebao/Plant Physiology Journal, 50(10), 1445–1452. https://doi.org/10.13592/j.cnki.ppj.2014.0209
Li, T., Jiao, J.-J., Su, Q., Hölscher, C., Zhang, J., Yan, X.-D., Zhao, H.-M., Cai, H.-Y., & Qi, J.-S. (2020). A GLP-1/GIP/Gcg receptor triagonist improves memory behavior, as well as synaptic transmission, neuronal excitability and Ca2+ homeostasis in 3xTg-AD mice. Neuropharmacology, 170(February), 108042. https://doi.org/10.1016/j.neuropharm.2020.108042
Lin, L.-Y., Pang, W., Chuang, W.-M., Hung, G.-Y., Lin, Y.-H., & Horng, J.-L. (2013). Extracellular Ca(2+) and Mg(2+) modulate aminoglycoside blockade of mechanotransducer channel-mediated Ca(2+) entry in zebrafish hair cells: an in vivo study with the SIET. American Journal of Physiology. Cell Physiology, 305(10), C1060-8. https://doi.org/10.1152/ajpcell.00077.2013
Liu, X., Xu, D., Wu, F., Liao, Z., Liu, J., & Deng, N. (2004). Preliminary Study on the Photoproduction of Hydroxyl Radicals in Aqueous Solution with Aldrich Humic Acid, Algae and Fe(III) Under High-pressure Mercury Lamp Irradiation. Photochemistry and Photobiology, 79(3), 259. https://doi.org/10.1562/be-03-25.1
Lu, K., Song, R., Guo, J., Zhang, Y., Liao, C., Hu, X., Ren, F., Lu, Y., Zuo, J., & Chen, H. (2023). regulation of SOS1 controls salt stress tolerance in Arabidopsis. 1–22.
Lu, X., Yang, X., Ye, B., Zhang, Z., Liu, Y., Gao, H., & Marshall, D. (n.d.). Title Profiling of breast cancer tumor-ion-molecule-flux by Non-invasive Micro-test Technology. 1–28.
Marenzana, M., Shipley, A. M., Squitiero, P., Kunkel, J. G., & Rubinacci, A. (2005). Bone as an ion exchange organ : Evidence for instantaneous cell-dependent calcium efflux from bone not due to resorption. 37, 545–554. https://doi.org/10.1016/j.bone.2005.04.036
McLamore, E. S., Stensberg, M. C., Sepúlveda, M. S., Zhang, W., Banks, M. K., & Porterfield, D. M. (2011). A self-referencing microelectrode for real time measurements of silver flux. Sensors and Actuators, B: Chemical, 153(2), 445–452. https://doi.org/10.1016/j.snb.2010.11.014
Nawata, C. M., Wood, C. M., & O’Donnell, M. J. (2010). Functional characterization of Rhesus glycoproteins from an ammoniotelic teleost, the rainbow trout, using oocyte expression and SIET analysis. The Journal of Experimental Biology, 213(Pt 7), 1049–1059. https://doi.org/10.1242/jeb.038752
Newman, I. a. (2001). Ion transport in roots: Measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant, Cell and Environment, 24(1), 1–14. https://doi.org/10.1046/j.1365-3040.2001.00661.x
Non-invasive Micro-test Technology & Applications (Life Science Ver. 1.0). (n.d.).
Pierson, E. S., Miller, D. D., Callaham, D. a, Shipley, a M., Rivers, B. a, Cresti, M., & Hepler, P. K. (1994). Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. The Plant Cell, 6(12), 1815–1828. https://doi.org/10.1105/tpc.6.12.1815
Potter, M., Newport, E., & Morten, K. J. (2016). The Warburg effect: 80 years on. https://doi.org/10.1042/BST20160094
Reid, B., & Zhao, M. (2011). Ion-selective self-referencing probes for measuring specific ion flux. Communicative and Integrative Biology, 4(5), 524–527. https://doi.org/10.4161/cib.4.5.16182
Shabala, S. N., & Newman, I. a. (1997). H+ flux kinetics around plant roots after short-term exposure to low temperature: Identifying critical temperatures for plant chilling tolerance. Plant, Cell and Environment, 20(11), 1401-1410. https://doi.org/10.1046/j.1365-3040.1997.d01-35.x
Shahzad, B., Shabala, L., Zhou, M., Venkataraman, G., Solis, C. A., Page, D., Chen, Z., & Shabala, S. (2022). Comparing Essentiality of SOS1-Mediated Na+ Exclusion in Salinity Tolerance between Cultivated and Wild Rice Species. International Journal of Molecular Sciences, 23(17), 9900. https://doi.org/10.3390/ijms23179900
Shamsi, M., Saghafian, M., Dejam, M., & Sanati-Nezhad, A. (2018). Mathematical Modeling of the Function of Warburg Effect in Tumor Microenvironment. Scientific Reports, 8(1), 1–13. https://doi.org/10.1038/s41598-018-27303-6
Smith, P. J. S., Hammar, K., Porterfield, D. M., Sanger, R. H., & Trimarchi, J. R. (1999). Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microscopy Research and Technique, 46(6), 398–417. https://doi.org/10.1002/(SICI)1097-0029(19990915)46:6<398::AID-JEMT8>3.0.CO;2-H
Sun, K., Liu, Y., Pan, Y., Di, D., Li, J., Xu, F., & Li, L. (2024). Non-invasive Micro-test Technology and Applications. October. https://doi.org/10.52601/bpr.2024.240009
Sun, K., Liu, Y., Pan, Y., Di, D., Li, J., Xu, F., Li, L., Mimata, Y., Chen, Y., Xie, L., Wang, S., Qi, W., Tang, Y., Sheng, H., Wang, B., Sun, R., Tan, D., Fu, D., Yin, Y., … Xu, Y. J. (2025). Non-invasive micro-test technology and applications. Biophysics Reports, 2025, Vol. 11, Issue 2, Pages: 96-111, 11(2), 96–111. https://doi.org/10.52601/BPR.2024.240009
Synology NAS DS1621 + 目录. (n.d.).
Xu, Y. (2023). Non-invasive Micro-test Technology—2022. NMT Communications, 1(1), 3–9. https://doi.org/10.5281/zenodo.8227586
Yang, C., & Li, B. (2019). Maintaining proton homeostasis is an essential role of the Warburg effect in proliferating cells. Cancer Biology and Medicine, 16(3), 391–395. https://doi.org/10.20892/j.issn.2095-3941.2019.0151
Yang, X., Ye, B., Zhang, Z., Liu, Y., Gao, H., Xu, Y., & Hospital, B. (n.d.). Title Warburg Effect is the Tip of the Iceberg Revealed by Profiling of Breast Cancer Tumor-ion-molecule-fluxes. 1–27.
Yue Jeff Xu. (2025). GiP: Global imOme Project. https://nmtia.org.cn/files/GiP-20250414.pdf
Yue, Y., Zhang, M., Zhang, J., Duan, L., & Li, Z. (2012). SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K + / Na + ratio. Journal of Plant Physiology, 169(3), 255–261. https://doi.org/10.1016/j.jplph.2011.10.007
Zhang, T., Yin, P., Yang, X., Liu, Y., & Xu, R. (2025). Non-Invasive Micro-Test Technology in Plant Physiology Under Abiotic Stress: From Mechanism to Application. Plants, 14(13), 1932. https://doi.org/10.3390/plants14131932
Zhu, M., Shabala, L., Cuin, T. A., Huang, X., Zhou, M., Munns, R., & Shabala, S. (2015). Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. Journal of Experimental Botany, 67(3), 835–844. https://doi.org/10.1093/jxb/erv493
季丹丹, 魏树和, & 王嗣淇. (2015). 非损伤微测技术及其在环境科学领域的应用. 生态学杂志ChineseJournalofEcology, 34(10), 2951-2955.
应用进展非损伤微测技术在植物生理生态学研究中的, Daidong, J., Aiqin, L., Huitong, L., Yangyang, Y., Zhichao, W., Junnan, W., & Lili, Z. (n.d.). Applications and advances of non-invasive micro-test technology in plant physiological-ecology research *. 应用与环境生物学报 Chin J Appl Environ Biol 2017,, 23(1), 175–0182. https://doi.org/10.3724/SP.J.1145.2016.01031
许越. (2023). 生命即环境——“天人合一”的NMT诠释与历史机遇. NMT通讯, 1, 3–9.
迟申燕, 杨欢, 蒋萍萍, & 陈浩. (2021). 非损伤微测技术 (nmt) 在环境保护研究中的应用.

