中关村NMT联盟“一带一路”全国测试服务网络测试服务信息

4月8日,某研究所将NMT技术应用于钙信号研究,测试样品为小麦,测试指标为Ca2+,在旭月研究院完成实验。| 5月9号,某研究院将NMT技术应用于逆境生理领域,测试样品为黄瓜幼苗,测试指标为NO3-、NH4+,在旭月研究院完成实验。| 6月2号,某研究院将NMT技术应用于逆境胁迫领域,测试样品为棉花苗,测试指标为Ca2+、H+、K+、Na+、IAA,在旭月研究院完成实验。| 6月5号,某研究院将NMT技术应用于植物逆境领域,测试样品为苜蓿,测试指标为K+,在旭月研究院完成实验。| 6月9号,某研究所将NMT技术应用于水稻逆境领域,测试样品为水稻,测试指标为Na+、Ca2+,在中国科学院植物研究所完成实验。| 6月11号,某研究院将NMT技术应用于植物抗逆领域,测试样品为酵母细胞,测试指标为IAA,在旭月研究院完成实验。| 6月16号,某高校将NMT技术应用于昆虫研究,测试样品为昆虫,测试指标为Ca2+、K+,在旭月研究院完成实验。| 6月19号,某研究院将NMT技术应用于植物抗逆领域,测试样品为拟南芥,测试指标为Ca2+,在旭月研究院完成实验。|

NMT鉴定抑制生长素极性运输相关基因功能

        植物的生长以及结构受到生长激素极性分布的调节。在激素-肌动蛋白正反馈回路的协调下,沿着微丝的生长激素转运囊泡循环维持上述过程的极性及灵活性。

        生长激素极性运输以及囊泡循环都会被诸如NPA这样的生长激素转运抑制剂抑制,从而使生长激素的作用失效。然而,NPA的潜在作用目标以及这一过程的机制并不清晰。

        瑞士弗里堡大学的Geisler课题组鉴定出一个TWD1耦合子——ACTIN7,其表现出微丝组织及形态调节的TWD1依赖性。此外,NPA介导的肌动蛋白细胞骨架重建也需要TWS1的参与。TWD1-ACTIN7调控质膜efflux转运体,因此act7和twd1共有的发育和生理表型显示了它们在生长激素转运体上的缺陷。同时,采用NPA或者是促肌动蛋白聚合/解聚剂处理植株可以模拟上述表型。研究推测TWD1通过调节微丝解聚来调控下游生长激素外流转运体的定位。

        研究采用非损伤微测技术(NMT),检测了WT、twd1-1、act7-4在-/+ 5 μM NPA、Jasplakinolide(诱导肌动蛋白聚合成微丝)、Latrunculin B(抑制肌动蛋白聚合)条件下,拟南芥根尖0-1000 μm范围内IAA的流速。结果显示,latrunculin B、Jasplakinolide的作用同NPA相似,抑制了PIN依赖的、从根表层细胞至内部微观细胞的IAA回流(吸收),这一结果与act7-4(ACT7功能丧失)结果一致。

        这一结果表明,不论是肌动蛋白细胞骨架的聚合或解聚,都导致了如NPA引起的PAT缺陷一样的效果。无论是促肌动蛋白聚合/解聚剂,还是TWD1、ACT7突变体导致的部分重贴的生长表型以及生长激素极性运输(PAT)缺陷这一现象,表明twd1非正常的肌动蛋白细胞骨架功能是导致PAT缺陷的主要原因。利用非损伤微测技术直接地鉴定了TWD1的功能——激活生长素转运抑制剂从而影响肌动蛋白细胞骨架,抑制生长激素极性运输。

 

 

        图注:WT、twd1-1、act7-4组拟南芥,在-/+ 5 μM NPA、Jasplakinolide、Latrunculin B条件下,根部IAA内流(吸收)速率。

        下载全文:F2016-001