2014年12月24日,湖南大学曾光明、陈桂秋、谭琼用NMT在Chemosphere上发表了标题为Physiological fluxes and antioxidative enzymes activities of immobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles after exposure to toxic pollutants in solution的研究成果。


  • 期刊:Chemosphere
  • 主题:TiO2提升黄孢原毛平革菌镉耐受力的生理证据
  • 标题:Physiological fluxes and antioxidative enzymes activities of immobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles after exposure to toxic pollutants in solution
  • 影响因子:4.208
  • 检测指标:H+、O2、Cd2+流速
  • 通讯作者:湖南大学曾光明、陈桂秋、谭琼


Immobilized Phanerochaete chrysosporium loaded with TiO2 nanoparticles (PTNs) are novel high-value bioremediation materials for adsorbing cadmium and for degrading 2,4-dichlorophenol (2,4-DCP). The real-time changes in H+ and O2 fluxes were measured using the noninvasive microtest technique (NMT).

The H+ influx increased after the addition of 2,4-DCP, and shifted to efflux following the addition of Cd2+. The O2 flux decreased after the addition of both 2,4-DCP and Cd2+. A larger Cd2+ flux was immediately observed after exposure to 0.5 mM Cd2+ (−351.25 pmol cm−2 s−1) than to 0.1 mM Cd2+ (−107.47 pmol cm−2 s−1). The removal of Cd2+ by the PTNs increased more after treatment with the 0.5 mM exposure solution (27.6 mg g−1) than with the 0.1 mM exposure solution (3.49 mg g−1).

The enzyme activities were analyzed to review the antioxidative defense system of PTNs in a solution containing various concentrations of Cd2+. The activities of the coenzyme nicotinamide adenine dinucleotide (NADH) oxidase as well as the enzyme catalase (CAT) plateaued at 6.5 U g−1 FW and 9.7 U g−1 FW, respectively, after exposure to 0.25 mM Cd2+. The activity of superoxide dismutase (SOD) increased gradually in solutions containing 0.1–0.6 mM Cd2+, and eventually reached a maximum (68.86 U g−1 FW).

These results illustrate how the antioxidative defense system and the physiological fluxes of PTNs respond to the stress caused by toxic pollutants.


负载有TiO2纳米粒子(PTNs)的固定化Phanerochaete chsssporium是用于吸附镉和降解2,4-二氯苯酚(2,4-DCP)的新型高价值生物修复材料。使用非损伤微测技术(NMT)测量H+和O2通量的实时变化。

加入2,4-DCP后,H+流入量增加,而加入Cd2+后,H+流入量移出。同时添加2,4-DCP和Cd2+后,O2通量下降。暴露于0.5 mM Cd2+(-351.25 pmol cm-2 s-1)后立即观察到更大的Cd2+通量,而不是暴露于0.1 mM Cd2+(-107.47 pmol cm-2 2 s-1)。用0.5 mM暴露溶液(27.6 mg g-1)处理后,PTN去除Cd2+的增加比使用0.1 mM暴露溶液(3.49 mg g-1)处理的增加更多。

分析了酶的活性,以审查包含各种浓度的Cd2+的溶液中PTN的抗氧化防御系统。暴露于0.25 mM Cd2+后,辅酶烟酰胺腺嘌呤二核苷酸(NADH)氧化酶和过氧化氢酶(CAT)的活性分别稳定在6.5 U g-1 FW和9.7 U g-1 FW上。超氧化物歧化酶(SOD)的活性在含0.1–0.6 mM Cd2+的溶液中逐渐增加,并最终达到最大值(68.86 U g-1 FW)。


Fig. 2. (A) Real-time Cd2+ flux of PTNs exposed to 0.1 mM Cd(NO3)2 and 10 mg L





12月03日,某高校将NMT技术应用于植物生长发育领域,测试样品为水稻,测试指标为Ca2+、IAA。在旭月研究院完成实验。| 12月03日,某高校将NMT技术应用于植物病理学,测试样品为孢子,测试指标为Mg2+。在旭月研究院完成实验。| 12月03日,某高校将NMT技术应用于逆境生理领域,测试样品为马铃薯,测试指标为Ca2+、H2O2。在四川农业大学完成实验。| 12月06日,某高校将NMT技术应用于植物抗旱领域,测试样品为拟南芥,测试指标为H+。在旭月研究院完成实验。| 12月10日,某研究所将NMT技术应用于分子生物学,测试样品为棉花,测试指标为Mg2+、Cu2+。在旭月研究院完成实验。| 12月11日,某高校将NMT技术应用于药理学,测试样品为胰岛细胞,测试指标为K+。在旭月研究院完成实验。| 12月12日,某高校将NMT技术应用于纳米金属生态毒理学,测试样品为小球藻,测试指标为Ca2+。在旭月研究院完成实验。| 12月17日,某高校将NMT技术应用于水稻物质转运领域,测试样品为水稻,测试指标为Mg2+ 、H+ 、K+ 、Na+、Cl-、NH4+、NO3- 、Ca2+。在江苏师范大学完成实验。| 12月19日,某研究所将NMT技术应用于植物生长发育领域,测试样品为拟南芥,测试指标Mg2+。在中国科学院植物研究所完成实验。| 12月20日,某高校将NMT技术应用于水生毒理学,测试样品为浮萍,测试指标为Ca2+。在旭月研究院完成实验。| 12月21日,某研究所将NMT技术应用于大型经济海藻生理生化及分子生物学,测试样品为海水种红毛菜,测试指标为Na+。在山东农业大学完成实验。| 12月24日,某高校将NMT技术应用于经济林栽培领域,测试样品为蓝莓,测试指标为Na+、K+、Ca2+ 、H2O2. 在旭月研究院完成实验。|