中关村NMT联盟“一带一路”全国测试服务网络测试服务信息

4月8日,某研究所将NMT技术应用于钙信号研究,测试样品为小麦,测试指标为Ca2+,在旭月研究院完成实验。| 5月9号,某研究院将NMT技术应用于逆境生理领域,测试样品为黄瓜幼苗,测试指标为NO3-、NH4+,在旭月研究院完成实验。| 6月2号,某研究院将NMT技术应用于逆境胁迫领域,测试样品为棉花苗,测试指标为Ca2+、H+、K+、Na+、IAA,在旭月研究院完成实验。| 6月5号,某研究院将NMT技术应用于植物逆境领域,测试样品为苜蓿,测试指标为K+,在旭月研究院完成实验。| 6月9号,某研究所将NMT技术应用于水稻逆境领域,测试样品为水稻,测试指标为Na+、Ca2+,在中国科学院植物研究所完成实验。| 6月11号,某研究院将NMT技术应用于植物抗逆领域,测试样品为酵母细胞,测试指标为IAA,在旭月研究院完成实验。| 6月16号,某高校将NMT技术应用于昆虫研究,测试样品为昆虫,测试指标为Ca2+、K+,在旭月研究院完成实验。| 6月19号,某研究院将NMT技术应用于植物抗逆领域,测试样品为拟南芥,测试指标为Ca2+,在旭月研究院完成实验。|

大麦木质部的离子平衡与抗盐的关系

图注:NaCl对两个品种的大麦生长和发育的影响。NaCl处理下大麦木质部K+和H+流的动态变化,离子通道抑制剂能够改变K+的外流。

 

抗盐是植物复杂的多基因性状,涉及大量的生理和生化过程,在这个过程中,离子平衡是一个关键的因素。本文研究了木质部的离子与抗盐的关系,阐明了离子平衡在抗盐中的机理。

离子进入木质部的控制过程是决定植物抗盐的关键因素。这项研究使用了MIFE技术(非损伤微测技术)、膜片钳、膜电势技术等方法测定了不同品种的大麦在抗盐过程中的相关特征。发现限制Na+进入木质部不是大麦抗盐的关键因素,抗盐品种木质部的Na+浓度和敏感性品种的大麦一样高。抗盐品种有保持更高的木质部K+/Na+比率的能力,能够有效阻隔Na+在叶片的积累,这说明K+会更加有效地进入木质部。抗盐品种大麦木质部的K+和Na+浓度的升高是为了有效地进行渗透调节,维持叶片的伸长生长。K+渗透电压敏感通道通过反馈行为维持木质部一个稳定的K+/Na+比率。

这项工作阐明了抗盐机制的复杂性,叶片具有更好地阻隔Na+的能力,木质部有维持高K+和高Na+的能力,这为抗盐机制的全面理解提供了证据。

 

关键词:salt stress(盐胁迫), xylem sap(木质部体液), K+, Na+, ion channels(离子通道), membrane depolarization(膜去极化)

参考文献:Shabala S et al. The Plant Journal (2010) doi: 10.1111/j.1365-313X.2009.04110.x.

 

PDF版及更多参考文献请点击这里