中关村NMT联盟“一带一路”全国测试服务网络测试服务信息

4月8日,某研究所将NMT技术应用于钙信号研究,测试样品为小麦,测试指标为Ca2+,在旭月研究院完成实验。| 5月9号,某研究院将NMT技术应用于逆境生理领域,测试样品为黄瓜幼苗,测试指标为NO3-、NH4+,在旭月研究院完成实验。| 6月2号,某研究院将NMT技术应用于逆境胁迫领域,测试样品为棉花苗,测试指标为Ca2+、H+、K+、Na+、IAA,在旭月研究院完成实验。| 6月5号,某研究院将NMT技术应用于植物逆境领域,测试样品为苜蓿,测试指标为K+,在旭月研究院完成实验。| 6月9号,某研究所将NMT技术应用于水稻逆境领域,测试样品为水稻,测试指标为Na+、Ca2+,在中国科学院植物研究所完成实验。| 6月11号,某研究院将NMT技术应用于植物抗逆领域,测试样品为酵母细胞,测试指标为IAA,在旭月研究院完成实验。| 6月16号,某高校将NMT技术应用于昆虫研究,测试样品为昆虫,测试指标为Ca2+、K+,在旭月研究院完成实验。| 6月19号,某研究院将NMT技术应用于植物抗逆领域,测试样品为拟南芥,测试指标为Ca2+,在旭月研究院完成实验。|

根部离子流速与铝毒耐性相关

图注:酸性胁迫及酸性/铝毒联合胁迫对拟南芥根部伸长区(上图)及成熟区(下图)H+流速的影响。(正值代表内流,负值代表外排)

 

酸性土壤中,铝(Al)影响植物根部的生长,而酸性(低pH)也影响植物根部的生长,且根部铝毒害与酸性(低pH)毒害的表现一致。这样就给研究人员提出一个问题:植物的耐铝毒与耐酸性之间是否受同一种机制控制?

为了阐明这一问题,澳大利亚研究人员选取四种基因型的拟南芥(野生型、耐铝毒的突变体alr104,铝毒敏感突变体als3als5)作为研究材料,进行酸性胁迫及酸性/铝毒联合胁迫后,通过非损伤微测技术测定根部H+及K+流速,同时还测定了根部周围碱化能力、内部钾离子浓度、质膜电势变化(Em)等数据指标。

结果表明,als5alr104突变体都耐酸性胁迫,alr104还耐酸性/铝毒的联合胁迫,als5及als3的铝毒敏感型基本一致。铝诱导引起的铝毒敏感型突变体(als3als5)根部伸长区H+内流及成熟区H+外流强度均比野生型及alr104的强。根部伸长区膜电位(Em)的变化趋势与K+流的变化相符:alr104及野生型拟南芥根部伸长区K+外流比铝毒敏感型的强。

最后研究人员得到以下结论,alr104的铝毒耐性与膜电位去极化、强K+外流、强H+内流有关,强H+内流导致根系周围土壤碱化,从而缓解酸性及铝毒的联合胁迫作用;als5的耐酸性主要与H+的高效吸收有关,而这种吸收可被Al胁迫所终止。以上研究结果为铝毒危害机理提供了有力的实验证据,也为制定土壤铝毒害防治方案奠定了理论基础。

 

关键词:铝毒害(Aluminium toxicity),H+流(H+ flux),K+流(K+ flux),质膜电势(plasma membrane potential)

参考文献:J. Bose et al. J. Exp. Bot, 2010, 61(11):3163-3175

 

PDF版及更多参考文献请点击这里