中关村NMT联盟“一带一路”全国测试服务网络测试服务信息

4月8日,某研究所将NMT技术应用于钙信号研究,测试样品为小麦,测试指标为Ca2+,在旭月研究院完成实验。| 5月9号,某研究院将NMT技术应用于逆境生理领域,测试样品为黄瓜幼苗,测试指标为NO3-、NH4+,在旭月研究院完成实验。| 6月2号,某研究院将NMT技术应用于逆境胁迫领域,测试样品为棉花苗,测试指标为Ca2+、H+、K+、Na+、IAA,在旭月研究院完成实验。| 6月5号,某研究院将NMT技术应用于植物逆境领域,测试样品为苜蓿,测试指标为K+,在旭月研究院完成实验。| 6月9号,某研究所将NMT技术应用于水稻逆境领域,测试样品为水稻,测试指标为Na+、Ca2+,在中国科学院植物研究所完成实验。| 6月11号,某研究院将NMT技术应用于植物抗逆领域,测试样品为酵母细胞,测试指标为IAA,在旭月研究院完成实验。| 6月16号,某高校将NMT技术应用于昆虫研究,测试样品为昆虫,测试指标为Ca2+、K+,在旭月研究院完成实验。| 6月19号,某研究院将NMT技术应用于植物抗逆领域,测试样品为拟南芥,测试指标为Ca2+,在旭月研究院完成实验。|

花粉管是研究植物细胞阴离子转运的模式材料

图注:使用NMT测定百合花粉管Cl-(A图)和H+(B图)流速的实时图。

 

阴离子转运体在植物细胞生物学中扮演着基本的生物学作用,特别在气孔关闭和营养吸收方面。但是关于这些转运体和他们的定位、分子本质仍然知道的不多。

葡萄牙的科学家Feijo等人总结了植物细胞中阴离子转运的基本作用,特别是阴离子如何控制花粉管的生长。花粉管是研究细胞极性的模式材料,使用非损伤微测技术(NMT可以揭示花粉管的生长受到不同的离子流种类和分布的控制。现有的数据表明Cl-通过质膜的转运在花粉管萌发和生长中起到重要作用。在花粉管生长过程中,尖端的Cl-出现显著的振荡,并且伴随着H+的周期性变化。

因此,我们通过非损伤微测技术研究调控花粉管信号系统的空间和时间模型,这种调控依赖于胞外的离子流和胞内的离子梯度。非损伤微测技术现在可以测定Cl-和NO3-两种最主要的阴离子,这为我们研究阴离子的作用提供了便利的工具。

 

关键词:阴离子转运,顶端生长,花粉管,非损伤微测技术

参考文献:TavaresB, et al.Journal of Experimental Botany, 2011, 62: 2273-2298.

 

PDF版及更多参考文献请点击这里