中关村NMT联盟“一带一路”全国测试服务网络测试服务信息

4月8日,某研究所将NMT技术应用于钙信号研究,测试样品为小麦,测试指标为Ca2+,在旭月研究院完成实验。| 5月9号,某研究院将NMT技术应用于逆境生理领域,测试样品为黄瓜幼苗,测试指标为NO3-、NH4+,在旭月研究院完成实验。| 6月2号,某研究院将NMT技术应用于逆境胁迫领域,测试样品为棉花苗,测试指标为Ca2+、H+、K+、Na+、IAA,在旭月研究院完成实验。| 6月5号,某研究院将NMT技术应用于植物逆境领域,测试样品为苜蓿,测试指标为K+,在旭月研究院完成实验。| 6月9号,某研究所将NMT技术应用于水稻逆境领域,测试样品为水稻,测试指标为Na+、Ca2+,在中国科学院植物研究所完成实验。| 6月11号,某研究院将NMT技术应用于植物抗逆领域,测试样品为酵母细胞,测试指标为IAA,在旭月研究院完成实验。| 6月16号,某高校将NMT技术应用于昆虫研究,测试样品为昆虫,测试指标为Ca2+、K+,在旭月研究院完成实验。| 6月19号,某研究院将NMT技术应用于植物抗逆领域,测试样品为拟南芥,测试指标为Ca2+,在旭月研究院完成实验。|

大肠杆菌对离子和非离子渗透物质具有不同的反应

图注:非损伤微测技术测定了NaCl和蔗糖处理下大肠杆菌K+流速的变化。图中正值为内流,负值为外流。

        胞外高浓度的NaCl引起大量的Na+进入细胞,导致质膜去极化,使K+难以吸收。相反,电中性的非离子渗透物没有显著引起细胞膜的去极化。但是细菌细胞是否有这种变化还没有报道过。

        澳大利亚塔斯马尼亚大学(University of Tasmania)Sergey Shabala实验室使用非损伤微测技术(NMT)等方法,研究了大肠杆菌在NaCl和蔗糖处理下K+流速的变化以及基因的表达,发现细菌通过增加有机渗透物质的合成,以及控制跨膜的离子流进而增加胞内的渗透压来适应高渗胁迫。研究表明,快速增加的高渗NaCl引起了K+的大量外流,导致胞内K+含量下降,同时Na+积累在细胞中。然而,等渗的蔗糖处理却缓慢增加了K+的吸收。NaCl和蔗糖处理大肠杆菌后上调的基因中有40%不同,进一步说明离子和非离子渗透调节作用具有显著的差异。

        这篇文章揭示了细菌应对渗透胁迫的不同机制,给出了离子流的直接证据,说明了电压门控的K+通道对细菌适应高渗胁迫具有重要意义。

 

参考文献: Shabala L, et al. Environmental Microbiology, 2009, 11: 137-148.

 

PDF版及更多参考文献请点击这里